Ground-Water Management in Central Maui

May 2002

Management Issues

- Can existing withdrawals be sustained?
- What is the maximum yield from existing wells?
- How can additional ground water be best developed?

Can existing withdrawals be sustained?

Can existing withdrawals be sustained?

How can additional ground water be best developed?

Example of possible well sites

Levels of Management

- Monitor salinity at pumped well
- Monitor water levels or salinity in observation wells
- Analytical model
- Numerical model

Questions that can be resolved with a numerical ground-water model:

- Can existing wells yield 20 Mgal/d in lao?
- Where should new wells be drilled?
- What if sugarcane cultivation stops?
- What happens during droughts?

Numerical Ground-Water Model

- Mathematical representation of a ground-water system
- Best tool for understanding a system
- Predictive management approach

Regional Model

Refined Model

Development of a Numerical Ground-Water Model

- 1. Compile/analyze existing data
- 2. Collect new data
- 3. Compute water budget
- 4. Construct regional model
- 5. Construct refined model

What Limits Numerical Ground-Water Models?

- Understanding of conceptual framework
- Data

Data Needs

Need

Purpose

climate
streamflow
water levels,
salinity, pumping
exploratory wells

recharge ground-water discharge aquifer properties and connection between areas hydrogeologic

Possible Sites for Weather Stations

GIS Water Budget

Rainfall+Fog Drip

Evaporation

Runoff

Land cover

Soils

Recharge

Quantify Ground-Water Discharge to Streams

Ground-Water Monitoring

Flow Between Areas

Exploratory Drilling

Pearl Harbor 3-D Model

Model Mesh

Model Views

Simulation of Withdrawals, 1880-1980

View looking east

View looking west

